Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Korean Medical Science ; : 1464-1472, 2014.
Article in English | WPRIM | ID: wpr-174930

ABSTRACT

Mcl-1 and Bcl-xL, key anti-apoptotic proteins of the Bcl-2 family, have attracted attention as important molecules in the cell survival and drug resistance. In this study, we investigated whether inhibition of Bcl-xL influences cell growth and apoptosis against simultaneous treatment of resveratrol and clofarabine in the human malignant mesothelioma H-2452 cells. Resveratrol and clofarabine decreased Mcl-1 protein levels but had little effect on Bcl-xL levels. In the presence of two compounds, any detectable change in the Mcl-1 mRNA levels was not observed in RT-PCR analysis, whereas pretreatment with the proteasome inhibitor MG132 led to its accumulation to levels far above basal levels. The knockdown of Bcl-xL inhibited cell proliferation with cell accumulation at G2/M phase and the appearance of sub-G0/G1 peak in DNA flow cytometric assay. The suppression of cell growth was accompanied by an increase in the caspase-3/7 activity with the resultant cleavages of procaspase-3 and its substrate poly (ADP-ribose) polymerase, and increased percentage of apoptotic propensities in annexin V binding assay. Collectively, our data represent that the efficacy of resveratrol and clofarabine for apoptosis induction was substantially enhanced by Bcl-xL-lowering strategy in which the simultaneous targeting of Mcl-1 and Bcl-xL could be a more effective strategy for treating malignant mesothelioma.


Subject(s)
Humans , Adenine Nucleotides/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Arabinonucleosides/pharmacology , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Gene Knockdown Techniques , Leupeptins/pharmacology , Lung Neoplasms/metabolism , M Phase Cell Cycle Checkpoints/drug effects , Mesothelioma/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Stilbenes/pharmacology , bcl-X Protein/antagonists & inhibitors
2.
Indian J Ophthalmol ; 2012 May; 60(3): 189-193
Article in English | IMSEAR | ID: sea-139468

ABSTRACT

Aim: To explore the molecular pathophysiology that might explain the epidemiologic association between cigarette smoke and age-related macular degeneration (AMD) by examining the effects of hydroquinone (HQ), a toxic compound present in high concentration in cigarette smoke-related tar, on human retinal pigment epithelial cells (ARPE-19), rat retinal neurosensory cells (R-28), and human microvascular endothelial cells (HMVEC). Materials and Methods: ARPE-19, R-28, and HMVEC were treated for 24 h with four different concentrations of HQ (500 μM, 200 μM, 100 μM, 50 μM). Cell viability, caspase-3/7 activation, DNA laddering patterns, and lactate dehydrogenase (LDH) levels were analyzed. Results: At 50 μM HQ, R-28 cells showed a significant decrease in cell viability compared with the dimethyl sulfoxide (DMSO)-treated controls. At the 100–500 μM concentrations, all three cell lines showed significant cell death (P < 0.001). In the ARPE-19, R-28, and HMVEC cultures, the caspase-3/7 activities were not increased at any of the HQ concentration. Conclusion: Our findings suggest that the mechanism of cell death in all three cell lines was through non-apoptotic pathway. In addition, neuroretinal R-28 cells were more sensitive to HQ than the ARPE-19 and HMVEC cultures.


Subject(s)
Animals , Animals, Newborn , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 7/metabolism , Cell Survival , Cells, Cultured , DNA Fragmentation/drug effects , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Humans , Hydroquinones/toxicity , Macular Degeneration/pathology , Mutagens/toxicity , Rats , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/enzymology , Retinal Pigment Epithelium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL